бесплатно рефераты
 

Разработка системы защиты атмосферы при производстве поливинилхлорида

p align="left">Наиболее распространенным способом получения ПВХ является метод суспензионной полимеризации винилхлорида. Вместе с тем этот процесс по механизму формирования полимерных частиц, а также по кинетике очень близок процессу полимеризации винилхлорида в массе. Поэтому способ полимеризации винилхлорида в суспензии можно рассматривать как удобную для практического осуществления разновидность полимеризации в массе. Сначала как более простой рассматривается способ полимеризации в массе [7].

Полимеризация в массе (блочная полимеризация)

При полимеризации по этому способу процесс протекает в массе жидкого мономера, в котором предварительно растворяется небольшое количество инициатора. Вследствие нерастворимости полимера в мономере твердая фаза начинает образовываться уже в самом начале процесса.

Трудности при осуществлении полимеризации винилхлорида в массе в промышленных условиях связаны прежде всего с отводом тепла реакции. Условия теплосъема особенно ухудшаются ввиду того, что с увеличением степени превращения винилхлорида постепенно исчезает жидкая фаза и образуются крупные агрегаты полимера. Тем не менее поиски путей создания промышленного процесса полимеризации винилхлорида в массе велись в течение многих лет, поскольку осуществление этого способа могло дать ряд преимуществ. Так, при отсутствии в полимеризационной среде таких вспомогательных продуктов, как вода, эмульгатор или защитный коллоид, и других компонентов, обычно используемых для полимеризации винилхлорида эмульсионным или суспензионным методом, можно получить очень чистый полимер. При полимеризации винилхлорида в массе отпадает необходимость в стадиях фильтрации и сушки, связанных с выделением полимера из водной суспензии или латекса, что значительно упрощает и удешевляет технологический процесс.

В результате проводившихся в течение ряда лет исследований французской фирмой Сент-Гобен было создано многотоннажное промышленное производство ПВХ методом полимеризации винилхлорида в массе [9].

Наглядная картина зарождения и роста полимерных частиц и их агрегирования при полимеризации в неподвижной массе была получена путем электронно-микроскопического исследования полимеризата на различных стадиях процесса. Полимеризационная среда уже в самом начале полимеризации мутнеет. Отобранный на этой стадии полимер представляет собой глобулы размером около 0,1 мкм. В ходе дальнейшей полимеризации происходит рост частиц. Распределение частиц по размерам на различных стадиях процесса, а также кинетика их роста дают основание полагать, что при этом новые частицы не возникают, а продолжают расти те частицы, которые образовались в начале процесса. Рост происходит не за счет агрегирования, а вследствие полимеризации мономера на их поверхности или адсорбции на поверхности частиц молекул полимера, выпадающих из жидкой фазы.

С увеличением размеров частиц происходит их слипание. Каждая частица оказывается фиксированной соседними частицами. Сблокированные частицы, продолжая расти, все более тесно примыкают друг к другу, частично деформируются и образуют непрозрачную пористую массу. Рост частиц продолжается до тех пор. Пока в полимеризационной среде имеется мономер. При этом происходит дальнейшая их деформация за счет взаимного сжатия и, наконец, образуется монолитный прозрачный блок.

Описанный механизм формирования полимера дает возможность понять, почем полимеризацию винилхлорида в массе в обычном автоклаве можно осуществлять лишь в сравнительно низкой степени конверсии (не выше 20-25%). В этом случае в полимеризационной среде содержится еще сравнительно много мономера, а связь между слипшимися частицами еще не слишком прочна, и образующиеся блоки способны диспергироваться при перемешивании реакционной массы. При более глубоком превращении мономера на стенках автоклава образуется твердый налет, затрудняющие отвод тепла, что ведет к местным перегревам и получению неоднородного полимера.

Поэтому для проведения промышленного процесса используется горизонтальный цилиндрический аппарат, вращающийся с небольшой скоростью вокруг своей оси, благодаря чему вся полимеризационная масса непрерывно поддерживается во взвешенном состоянии и перемешивается. Внутри аппарата уложены в один или два ряда металлические шары или ролики, которые при вращении реактора перекатываются, непрерывно растирая полимер, что предотвращает образование крупных агрегатов. С помощью шаров обеспечивается также непрерывная очистка от полимера внутренней поверхности реактора. В аппарате указанной конструкции удается получить порошкообразный ПВХ при степени конверсии мономера до 80% [5].

Используется также другой способ перемешивания реакционной смеси в горизонтальном цилиндрическом полимеризаторе. Перемешивающее устройство представляет собой набор двух-трех ребристых веретен различного диаметра, которые вращаются внутри автоклава в противоположных направлениях.

Полимеризация винилхлорида в массе инициируется перекисными инициаторами или азотсоединениями, которые обычно применяются и при суспензионной полимеризации этого мономера.

Изучение молекулярного состава и морфологии порошка полученного мономера при полимеризации винилхлорида во вращающемся автоклаве с металлическими шарами показало, что свойства ПВХ в большой мере зависят от глубины превращения мономера в полимер.

В процессе полимеризации винилхлорида температура оказывает решающее влияние на молекулярный вес полимера; с повышением температуры степень полимеризации уменьшается. При 65-70% -ной степени превращения реакционная масса, очевидно, представляет собой сухой порошок и отвод тепла от полимерно-мономерных частиц, в которых еще продолжается полимеризация, практически прекращается, что и приводит к образованию низкомолекулярного полимера.

С увеличением степени конверсии меняются также и физические свойства ПВХ-порошка. Если прервать полимеризацию на начальных стадиях, то полученный полимер характеризуется очень низкой насыпной массой и высокой пористостью. С повышением степени конверсии насыпная масса полимера возрастает, а пористость его частиц уменьшается. После 30-40% -ной степени превращения эти показатели практически уже не меняются [9].

Отличительной особенностью способа полимеризации винилхлорида в массе является то, что он позволяет получать высокопористый ПВХ, способный быстро поглощать пластификатор. Однако слишком низкая насыпная масса этого полимера (не выше 0,3 г/см3) нежелательна, так как это вызывает неудобства при его транспортировке и переработке. Насыпная масса полимера может быть значительно повышена (до 0,46 г/см3), если разделить процесс на две стадии и на первой стадии (примерно до 10% -ной степени конверсии) вести его при интенсивном перемешивании, а на второй - при слабом перемешивании. Для регулирования размеров частиц, образующихся при полимеризации винилхлорида в массе во вращающемся автоклаве, предлагается вводить в полимеризационную среду окислы элементов II, III и IV групп в количествах от 0,1 до 3% от веса мономера. Размеры частиц вводимых окислов не должны превышать 150 мкм.

Вследствие неблагоприятных условий теплосъема, которые к тому же ухудшаются с увеличением глубины превращения, ПВХ, полученный при полимеризации винилхлорида в массе, обладает сравнительно широким молекулярно-весовым распределением. Он имеет также весьма разветвленную структуру, так как в местах перегрева реакционной среды и особенно при высоких степенях конверсии ускоряется реакция передачи цепи через полимер. Местные перегревы могут привести также к частичному дегидрохлорированию образующегося полимера. Выделяющийся при этом хлористый водород замедляет полимеризацию винилхлорида.

Для улучшения условий полимеризации винилхлорида в массе в полимеризационную среду вводят акцепторы хлористого водорода. При добавлении в полимеризационную среду стеаратов кальция, бария, кадмия, свинца или алифатического эпоксисоединения (продукт конденсации эпихлоргидрина и этиленгликоля) заметно сокращается продолжительность полимеризации. Эпоксидная смола, полученная из эпихлоргидрина и дефенилолпропана (ЭД-5), оказалась ингибитором полимеризации, что, вероятно, объясняется наличием в ней фенольных остатков [10].

Полимеризация винилхлорида в присутствии акцепторов хлористого водорода обеспечивает увеличение термической стабильности полимера. ПВХ, полученный при полимеризации винилхлорида в присутствии акцепторов хлористого водорода, менее разветвлен.

Первая стадия полимеризации (примерно до 10% -ной степени конверсии) осуществляется при интенсивном перемешивании в автоклаве. Полученная суспензия полимера в мономере сливается в горизонтальный вращающийся автоклав с металлическими шарами или в горизонтальный автоклав со специальной мешалкой, затем смешивается со свежим мономером, инициатором и акцептором хлористого водорода. В этом автоклаве полимеризацию продолжают вести до 65-70% -ной степени конверсии. Из автоклавов перед их загрузкой тщательно удаляется кислород (осуществляется продувка азотом и ваккумирование). После достижения заданной степени превращения незаполимеризовавшийся мономер сдувается через фильтр на конденсатор. Сконденсировавшийся мономер стекает в резервуар. Полученный полимер выгружается в виде пылевоздушной смеси в бункер-циклон, где от него отделяется воздух, и поступает на рассев. В процессе выгрузки полимера из автоклава в него подается воздух для поддержания нужного соотношения пылевоздушной смеси.

Было предложено также осуществлять полимеризацию винилхлорида в массе непрерывным способом. По этому методу мономер с растворенным в нем инициатором непрерывно подается в горизонтальный вращающийся автоклав с металлическими шарами и далее порции мономера с порошком полимера периодически сдуваются из автоклава путем кратковременного открытия специального канала [7].

Суспензионная полимеризация

Процесс осуществляется в каплях мономера, диспергированного в водной фазе путем интенсивного перемешивания. В мономере растворяется небольшое количество инициатора, а в водную фазу вводятся защитный коллоид, препятствующий слипанию мономер-полимерных частиц. Как и при полимеризации другими способами, процесс проводится при заданной температуре (и соответствующем давлении), обеспечивающей получение полимера с необходимым молекулярным весом.

Особенности суспензионной полимеризации винилхлорида

Суспензионная полимеризация является одним из самых распространенных промышленных способов производства поливинилхлорида. Это объясняется рядом важных достоинств данного способа. Полимеризация мономера, диспергированного в такой теплоемкой среде, как вода, протекает в условиях эффективного отвода тепла реакции, что позволяет получить полимер со сравнительно узким молекулярно-весовым распределением. кроме того, в отличие от эмульсионной (латексной) полимеризации, при которой образующиеся очень мелкие полимерные частицы нельзя выделить из полученного латекса путем фильтрации, в результате суспензионной полимеризации образуются гранулы размером 50-200 мкм, которые отделяются от водной фазы на центрифугах и легко промываются. Поэтому содержание посторонних примесей в суспензионном поливинилхлориде незначительно [6].

Уже в начальный период развития промышленного производства суспензионного ПВХ процесс полимеризации стремились проводить так, чтобы получить полимер с заданным средним молекулярным весом, узким молекулярно-весовым распределением и однородный по химическому составу. Было ясно, что следует избегать дегидрохлорирования полимера, так как образование двойных связей приводит в появлению окраски и снижению его термостабильности. Однако разные партии ПВХ с одинаковыми показателями среднего молекулярного веса часто различались по своей способности к переработке в изделия. Как правило, полимер трудно совмещался с пластификаторами и стабилизаторами и давал недостаточно гомогенные пленки. Рецептура полимеризационной смеси в этот период была бедна, а технологический процесс и аппаратура несовершенны. Цикл полимеризации был очень длительным.

Впоследствии применение новых синтетических защитных коллоидов, активных инициаторов полимеризации и различных модифицирующих добавок, а также совершенствование аппаратуры, повышение степени чистоты исходных продуктов позволило значительно интенсифицировать процесс и улучшить качество полимера. Появилась возможность перерабатывать суспензионный поливинилхлорид в высококачественные гомогенные пластифицированные материалы, а также в жесткие прозрачные изделия, широко используя для этого высокопроизводительные экструзионные методы. Все это потребовало нового подхода к оценке качества ПВХ.

Стало очевидным, что способность полимера к переработке и качество получаемых изделий определяются не только его молекулярным весом и химическим строением, но также его надмолекулярной структурой и физическими свойствами. Оказалось, что суспензионный метод полимеризации таит в себе большие возможности в отношении воздействия на эти свойства. Изменяя параметры технологического процесса, а также вводя в полимеризационную среду различные добавки (часто в очень незначительных количествах) или, используя защитные коллоиды различной природы, можно заметно влиять на структуру и морфологию получаемого полимера.

К недостаткам суспензионной полимеризации винилхлорида следует отнести трудность осуществления ее непрерывным способом. Попытки создания приемлемого для промышленного производства непрерывного процесса, позволяющего получить полимер высокого качества, до сих пор остаются безуспешными [10].

Суспензионная полимеризация винилхлорида проводится в присутствии растворимого в мономере инициатора (органическая перекись или азотсоединение), воды и защитного коллоида. При перемешивании мономер с водой устанавливается динамическое равновесие между дроблением мономера на капли и обратным процессом их слияния (коалесценция). С введением в среду защитного коллоида на поверхности капли мономера образуется защитный слой, и капля стабилизируется. Молекулы защитного коллоида располагаются на поверхности раздела фаз так, что их гидрофобные части (обычно углеводородная цепь) направлены в сторону мономера, а гидрофильные - в сторону воды. Размеры образующихся капель (дисперсность эмульсии) зависят от интенсивности перемешивания и свойств защитного коллоида. Если в мономере растворен инициатор, то при температуре среды, достаточной для его распада, мономер начинает полимеризоваться. По мере полимеризации вязкость в капле мономера возрастает и увеличивается ее сопротивление деформации. Одновременно растет и склонность диспергированных частиц к слипанию при соударении. При степени превращения в пределах 20-60% частицы отличаются особенно большой липкостью. Здесь в основном и сказывается роль защитного коллоида, призванного защищать частицы от слипания.

Поскольку используемый инициатор растворим в мономере и практически нерастворим в воде, полимеризация винилхлорида протекает в капле мономера, защищенной стабилизатором эмульсии. В ряде работ указывается сходство между полимеризацией в каплях и полимеризацией в массе мономера, в связи с чем полимеризацию в суспензии часто называют микроблочной полимеризацией.

По механизму формирования полимерных частиц и по кинетике процесса суспензионная полимеризация винилхлорида резко отличается от эмульсионной полимеризации, при которой используются водорастворимые инициаторы и эмульгаторы типа мыл. Скорость суспензионной полимеризации практически не зависит от концентрации защитного коллоида, в то время как при эмульсионной полимеризации во многих случаях скорость процесса возрастает с увеличением концентрации эмульгатора [11].

Если используемый инициатор способен растворяться не только в мономере, но и в воде, полимеризация части винилхлорида в суспензионном процессе может протекать в водном растворе. Это показано при помощи исследований полимеризации винилхлорида под действием различных инициаторов в присутствии растворимого в мономере красителя. При этом полимер, образующийся в капле, имеет интенсивную окраску, а в водном растворе - неокрашен. При использовании перекиси бензоила, которая практически нерастворима в воде, полимеризация протекает только в каплях (все частицы полимера окрашены). При использовании же азо-бис-изобутиронитрила часть частиц получается неокрашенной. При этом оказывается, что окрашенный полимер имеет более низкий молекулярный вес по сравнению с неокрашенным, что можно объяснить более высокой концентрацией мономера, а, следовательно, и большей скоростью передачи цепи через мономер в капле. Молекулярный вес полимера, образовавшегося в каплях, равен молекулярному весу полимера, полученному при полимеризации винилхлорида в массе в аналогичных условиях. Весьма интересным является обнаруженное в упомянутой работе различие между морфологией частиц полимера, образовавшегося в капле и частиц, получившихся в водном растворе. Если среди первых содержалось большое количество монолитных стекловидных частиц, то вторые представляют собой только рыхлые непрозрачные агрегаты, состоящие из большого числа мелких частиц. Образование таких пористых частиц также наблюдается при добавлении к водной фазе, содержащей защитный коллоид, незначительных количеств ПАВ. Эти вещества влияют не только на дисперсность получаемого поливинилхлорида, но и на морфологию образующихся гранул [9].

Очень пористый ПВХ с развитой поверхностью получается при использовании в качестве инициаторов полимеризации гидроперекисей алифатических или циклических кетонов и их производных. Так как в этих инициаторах присутствуют гидроксильные группы, они обладают определенным гидрофильно-гидрофобным балансом и располагаются на границе раздела фаз вода-мономер, где и происходит инициирование полимеризации. Кроме того, поскольку такие инициаторы растворимы не только в мономере, но и в воде, полимеризация, по-видимому, протекает частично и в водном растворе, что, как уже указывалось, сильно влияет на морфологию образующегося ПВХ.

Свойства поливинилхлорида в большой степени определяются природой и свойствами применяемых защитных коллоидов и различных добавок.

Роль стабилизаторов эмульсии в процессах суспензионной полимеризации винилхлорида заключается в защите диспергированных в полимеризационной среде капель от коалесценции особенно в период, когда частицы имеют большую липкость.

Применяемые для этой цели защитные коллоиды не создают эффекта сопряженной, или мицелярной растворимости, и поэтому их нельзя отнести к эмульгаторам, как, например, вещества типа мыл. Часто применяемое к защитным коллоидам для суспензионной полимеризации название “диспергаторы" не является точным, так как, хотя диспергаторы и влияют на размеры частиц эмульсии, диспергирование осуществляется здесь за счет перемешивания [7].

В качестве стабилизаторов эмульсии при суспензионной полимеризации используются соединения двух классов:

Минеральные нерастворимые в воде соединения, способные образовывать тонкодисперсные взвеси, например гидроокиси металлов, фосфаты, карбонаты, каолин, коллоидная глина (бентонит) и т.п.

Органические водорастворимые высокомолекулярные соединения.

В качестве защитных коллоидов наиболее часто используются гидроокись магния, поливиниловый спирт, метилцеллюлоза, желатин и поливинилпирролидон.

Добавки:

а) Поверхностно-активные вещества типа мыл (ионогенные и неионогенные), которые способствуют лучшему диспергированию винилхлорида, разрыхлению поверхности образующихся частиц, повышению их пористости.

б) Добавки, растворимые в мономере. Они способствуют образованию рыхлых пористых частиц ПВХ.

в) Окислы гидроокиси или соли металлов (бария, кадмия, стронция, кальция, магния, свинца). Оказывают влияние на морфологию образующегося полимера, оседая на границе раздела фаз.

г) Антиоксиданты. Уменьшают количество образующихся полиперекисей и хлористого водорода. Одновременно возрастает термостабильность ПВХ.

д) Регуляторы рН (водорастворимые карбонаты и фосфаты, пирофосфат натрия).

е) Регулятор молекулярного веса [9].

Технология получения суспензионного ПВХ

Для получения полимера с заданными физико-механическими свойствами правильно выбранная рецептура должна сочетаться с оптимальными условиями технологического процесса. Используемая аппаратура и технологические приемы на подготовительной стадии должны обеспечить:

Тщательную очистку полимеризатора от остатков полимера, осевшего на внутренних поверхностях аппарата в ходе предшествующей операции полимеризации;

Практически полное удаление кислорода из полимеризационной среды;

Равномерное распределение в полимеризационной среде всех используемых компонентов.

Важнейшим параметром процесса является температура полимеризации. В зависимости от желаемой степени полимеризации ПВХ температуру поддерживают в пределах 45-75 0С. При этом давление в автоклаве соответствует упругости паров винилхлорида при данной температуре и колеблется в пределах 6-10 атм. Для получения ПВХ с наиболее узким молекулярно-весовым распределением температуру в процессе полимеризации поддерживают в небольших пределах. Отклонения от заданной температуры допускаются не более чем на 0,5 0С. В современном промышленном процессе полимеризации винилхлорида такой режим обеспечивается путем автоматического регулирования температуры в полимеризаторе [5].

Страницы: 1, 2, 3, 4


ИНТЕРЕСНОЕ



© 2009 Все права защищены.